

Investor theme call: Engine Power Plants

Improved execution and profitability, continued strong position for growth, and decarbonisation tailwinds

11 December 2024

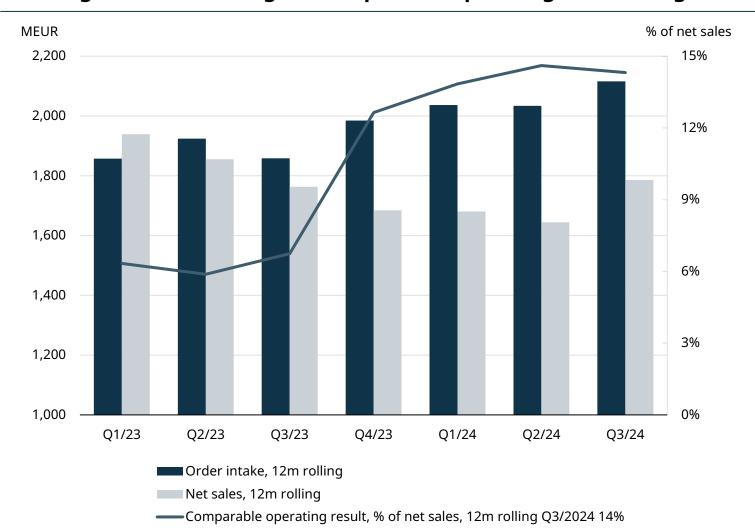
Engine Power Plants business performance has improved and is well positioned for future growth

In this event: Engine business

- Focus today will be on the Engine Power Plant Business end-to-end: both equipment and services
- The Energy Storage &
 Optimisation business is under
 strategic review and will not be
 discussed today

Key reflections

- A stronger and more resilient Engine Power Plant business
- An improved, future-proof product portfolio
- Strong long-term growth prospects in balancing power
- A culture of continuous improvement


The end-to-end Engine business is delivering on commitments from CMD 2023

	Focus areas from CMD in 2023	→ Status as of 2024 ¹
Profitability Focus on profitability and project excellence	New organisation and governance	✓ Successfully implemented
	Stronger risk management	✓ Improved risk-reward balance with >80% EEQ² and <20% EPC³
	Operational leverage from growth	
	Lean operations and flow efficiency	 Continuous improvement focus on products and services delivery
	Moving up the service value ladder	
	Increasing agreement coverage	
Growth Capture growth in balancing solutions and services	Continued growth in Services	→ +7% Services sales growth, book-to-bill ratio 1.1
	Strong thermal balancing growth	→ +260% increase in balancer order intake
	Future-proof portfolio for sustainable fuels and optimisation	 100% hydrogen power plant launched, hydrogen engine development programme on track

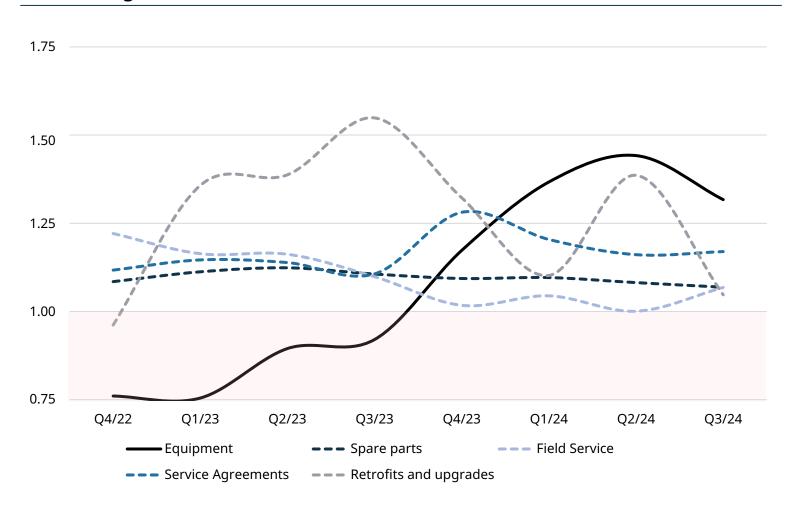
¹⁾ Growth: LTM (last twelve months) Q3/24 compared to LTM Q3/23 2) Extended Equipment Supply, in MEUR 3) Engineering, Procurement, Construction, in MEUR 4) In MW, Q4/21 - Q3/24 *All figures in MEUR unless otherwise indicated*

Engine Power Plants shows end-to-end profitable growth

Growing order intake, higher comparable operating result margin

Higher order intake and improved profitability 2023-LTM Q3/2024

+13% total equipment sales 2023-LTM Q3/2024

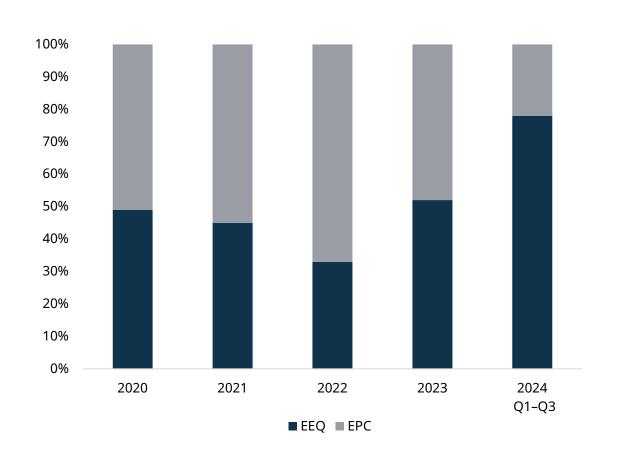

LTM profitability drivers

- Recovered profitability in equipment sales
 - Improved risk-reward balance and project selection criteria
 - Continuous improvement and higher operating leverage
- Growth in service sales

LTM: Last twelve months (Q4/2023 - Q3/2024)

Book-to-bill shows growth for both equipment and services

12M rolling book-to-bill ratios, EPP and Services



The new balance between EEQ and EPC supported profitability

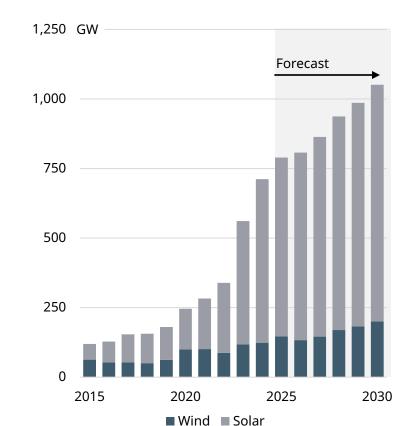
Rebalanced EEQ/EPC net sales¹

Improving profitability through risk management

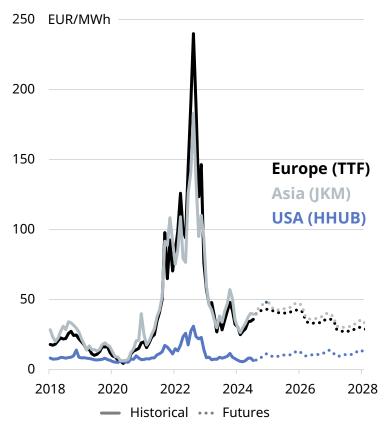
- New organisation and governance has improved risk management
- Energy has EEQ (extended equipment supply) as the preferred offering
- EPC (engineering, procurement, and construction) is considered in selected markets and with sufficient risk/reward premium and strong sales/project management
- EPC has higher revenue potential and potential to obtain better end-to-end margins
- Rebalance in risk appetite leads to an improved order book risk/reward profile for 2024 and onwards
- At the end of Q3 2024 80% of the order book was EEQ orders; this will vary from year to year

¹⁾ Share of Net Sales (MEUR) by year, EPP and Services

Market trends are generally positive, with some uncertainty remaining


Opportunities and tailwinds

- The energy transition is accelerating, with renewables capacity forecasts at record levels
- Renewables remain the least expensive way to generate electricity, driving balancing demand
- Natural gas prices have moderated, improving competitiveness for gas
- Regulatory changes are largely supportive of thermal balancing


Uncertainties and headwinds

- Rising protectionism and increased use of industrial policy
- US election result has increased trade- and tariff-related uncertainty

Renewables capacity additions

Natural gas prices

Forecasts from BNEF: 3Q 2024 Global PV Market Outlook and 1H 2024 Global Wind Market Outlook

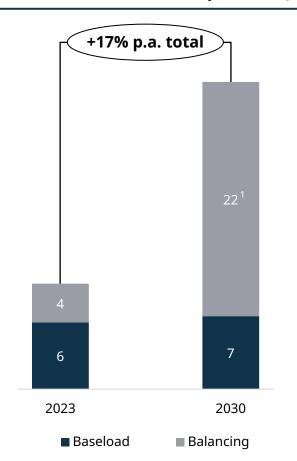
Thermal balancing is needed for an optimal transition

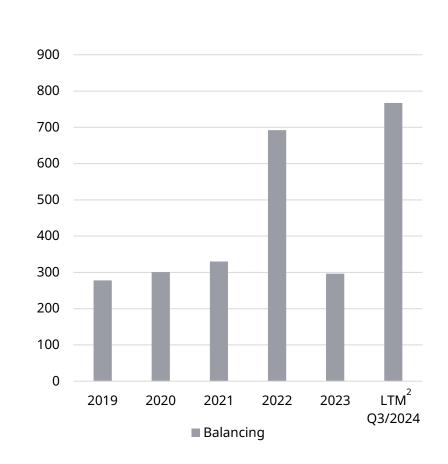
We modelled the world as one power system and compared two Net Zero pathways between now and 2050. Pathway 1 allows only additions of renewable energy and energy storage, while Pathway 2 also includes additions of thermal balancing.

The modelling shows that a power system including flexible balancing power plants has significant advantages when it comes to both the cost and pace of the energy transition, compared to a renewables-only scenario.

65 trillion EUR cost savings between 2025-2050

Faster CO2 reductions


50% less renewables capacity and land needed in 2050


88% less wasted energy in renewable curtailment by 2050

The significant growth opportunity in balancing is materialising

Addressable market (annual, GW)

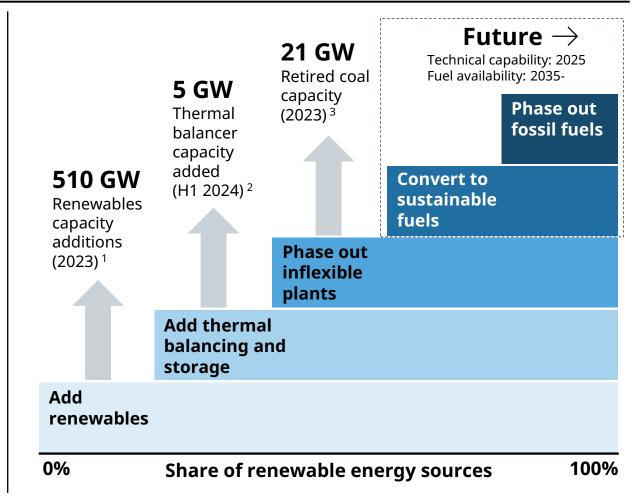
The case for thermal balancing

- Record renewables installations drive demand for thermal balancing
- Favourable market reforms to balancing are progressing
- Gas is a crucial transition fuel
- Balancer order intake on track for a record year
- Good order pipeline
- North America and Europe are high-potential balancing markets

¹⁾ Balancing forecast based on BloombergNEF forecast wind and solar capacity additions, estimated share of balancing capacity compared to renewables growth.
2) Q4/2023 – Q3/2024

The need for thermal balancing is driven by increased renewable penetration

Balancing and the energy transition

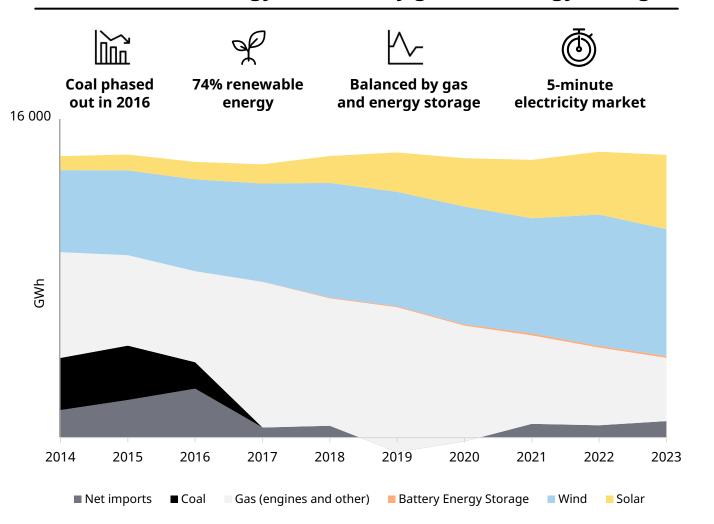

Creating the need for balancing

- Increasing penetration of intermittent renewables creates a need for thermal balancing, while switching off coal drives demand for dispatchable capacity
- Using inflexible power plants leads to curtailment sufficient balancing power ensures maximum utilisation of renewables
- Engines support power grids on a minute, hourly, daily, and seasonal basis, and react quickly to changes

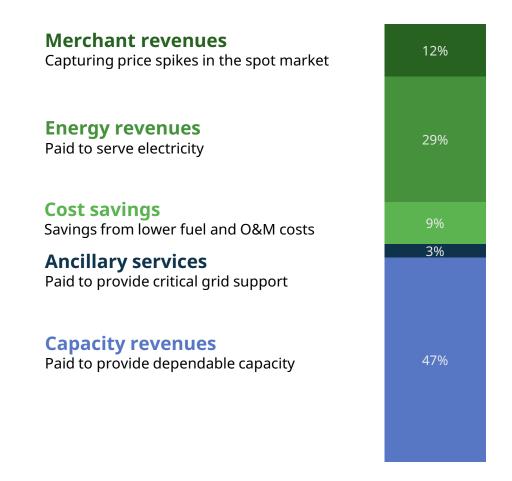
Revenue triggers and market examples

- Thermal balancing has high value for the power system, but power plants must also be profitable investments for owners
- Introducing 5-minute intervals for dispatch and price settlement in electricity markets improves power system ability to balance renewables
- The balancing and flexibility needed in power systems can also be incentivised through capacity mechanisms or payments for ancillary services and reserves

Optimal path to decarbonising the global energy industry



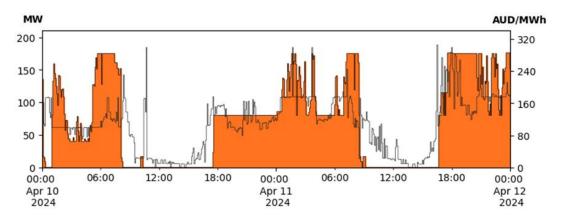
1) IEA Renewables 2023 2) Internal calculations based on McCoy Power Reports, collected data 3) Global Energy Monitor



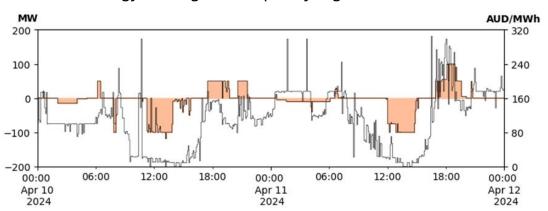
South Australia: a power system showcasing the future of the energy transition

74% renewable energy balanced by gas and energy storage

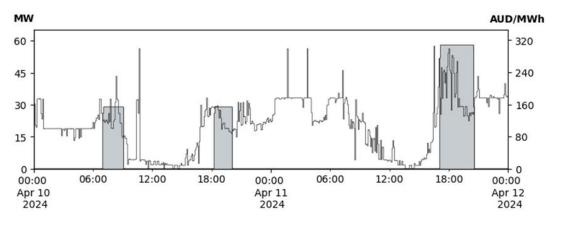
Balancers can tap into multiple value streams¹


¹⁾ Wärtsilä study on how balancers can generate value (based on South Australia's power system)

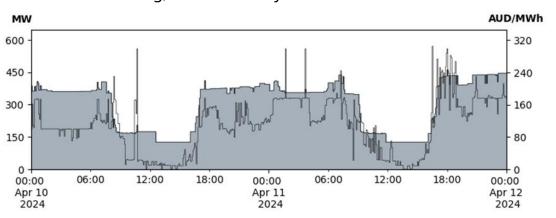
Engines are unique, flexible market assets


Internal combustion engines (ICE)

Rapid start-stops, part-loading, and load following


Battery energy storage systems (BESS)

Focus on energy shifting and frequency regulation


Aeroderivatives and other open-cycle gas turbines (OCGTs)

Operating in an on-off pattern

Combined-cycle gas turbines (CCGTs)

Continuous running, constrained by minimum load

12

Wärtsilä's sweet spot is in 50 - 400 MW plants

Engine technologies

High-speed engines

- Low capex and low efficiency
- Best suited for backup and low running hours applications

Wärtsilä medium-speed engines

- High efficiency due to multiple modular units
- Faster start-up; can cycle several times per day with no cost impact
- Transparent modelling shows the value of balancing with engines

Most competitive in applications with high numbers of starts/stops and markets with structures and incentives that reward flexibility

Gas turbine technologies

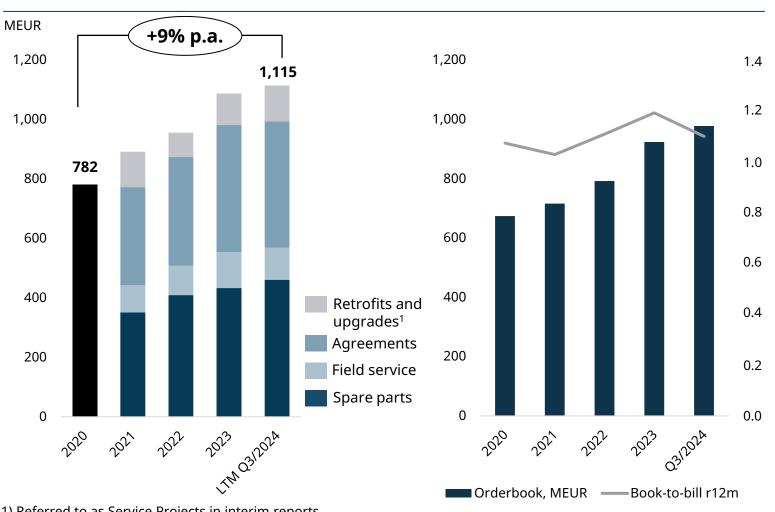
Aeroderivative gas turbines

- Lower capex than engines but less fuel-efficient
- More flexible than heavy-duty gas turbines (HDGTs)

Open-cycle gas turbines (OCGTs)

- Low efficiency; poorly suited for balancing
- Competitive mainly in peaking applications with low amount of starts/stops

Combined-cycle gas turbines (CCGTs)


- High efficiency, but high capital costs (CAPEX)
- Best suited for large-scale baseload applications

Solid services performance continues

+17% total Services sales 2022-LTM Q3/2024

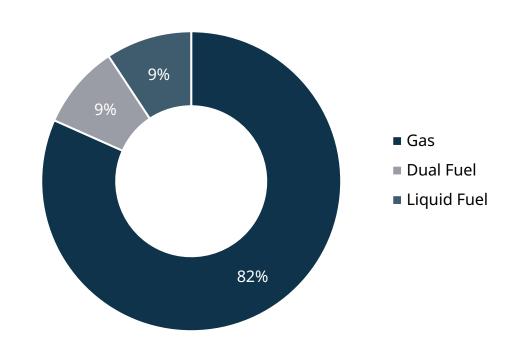
+22% Service agreements sales 2022-LTM Q3/2024

+40% total orderbook 2020-2023

Energy services growth drivers remain solid

- Increasing agreement coverage
- Growing installed base
- Upgrades & sustainable fuel conversion demand
- Growth potential in outcome-based and decarbonisation agreements
- Stable total running hours

1) Referred to as Service Projects in interim reports



Wärtsilä Energy is well positioned to provide the fuel flexibility needed for the energy transition

Technology roadmap for engines

Order intake by fuel, 2020-2024 (MW)

- Plant lifetimes stretching to 2050: fuel flexibility futureproofs engines
- There will be no single global green fuel for use in the energy sector
- We launched our 100% hydrogen power plant in Q2 this year, expected to be released for sales in 2025
- 25% hydrogen blend already possible today
- Sustainable fuels come with high conversion losses and should be used exclusively for balancing and the decarbonisation of hard to abate sectors
- Using expensive sustainable fuels for inflexible baseload power does not make commercial or environmental sense – leading to a future advantage for balancing

- 91% of engine MW designed for natural gas operation
- Strong upgrade track record, with 140 liquid fuel engines converted to gas in 18 countries

Service upgrades have a strong customer value proposition and can increase agreement coverage

*N*ÄRTSILÄ

Keeping customer power plants reliable, affordable, and sustainable

449 MEUR net sales 2021– Q3/2024

1.68 GW of capacity upgraded to gas from liquid fuel

TÜV SÜD-certifiedH2 conversion available

Offering

Upgrading customer installations with a broad portfolio of solutions

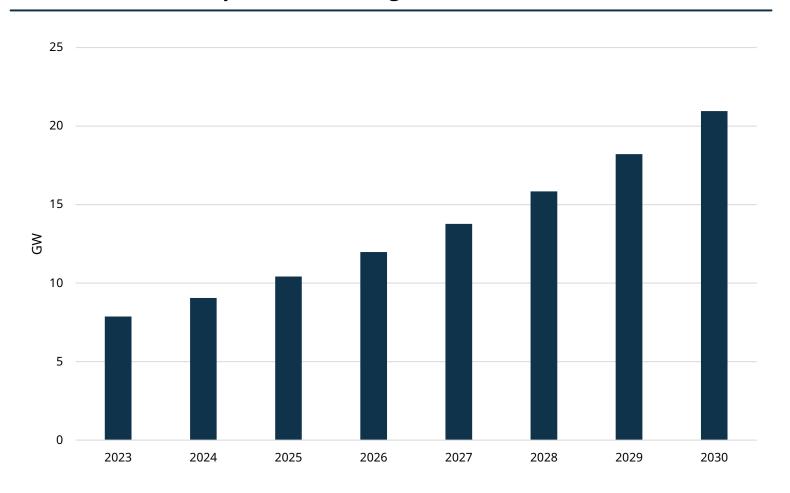
Fuel conversions, repowering, electrical and automation upgrades. Engine performance upgrades and waste-heat recovery

Value proposition

Supporting customers through decarbonisation and ensuring maximum reliability and profitability

Decreased production cost, increased plant efficiency, output, and availability. Reduced emissions and preventing asset stranding

Revenue


Extending installed base lifetime and increasing agreement coverage

Upgrades to enable climbing the services value ladder. Demonstrators and pilots for sustainable fuel conversions

We see growth opportunities for baseload engine power plants in Data Centres

Global data centre power demand growth¹

New data centre power capacity expected to be added 2024-2027

~ 45 GW

Typical grid connection time currently **5 years**

Wärtsilä's sweet spot

Baseload power for offgrid data centres²

¹⁾ Adapted from IEA Electricity 2024, 2) Waiting for grid interconnection due to grid constraints

The Data Centre power market is shifting, with new thermal baseload opportunities in specific markets

Historical: backup power

20-100 MW

typical power need

Grid interconnections immediately available

- Customer focus: CAPEX, availability
- Segment typically served by highspeed engines
- High risk in case of strict availability guarantees
- Limited lifecycle service opportunity

Emerging: off-grid baseload

50-300 MW

typical power need

Grid interconnection times up to 5-7 years in some markets

- Typically requires medium-speed engines or gas turbines
- Wärtsilä competitiveness high due to shorter lead times, modularity, reliability
- High lifecycle sales potential

Future performance driven by equipment sales growth, service volumes, and continuous improvement

Equipment margins

- Maintaining achieved balance in risk management
- ✓ Operational leverage from growth
- Total installed cost reduction

Equipment sales

- Strong thermal balancing growth
- Data centre power demand growth
- Future-proof portfolio for sustainable fuels and optimisation

Continuous improvement

- ✓ Lean operations and flow efficiency
- Predictive and autonomous operations
- Cost indexation & value-based pricing

Service sales

- Growing installed base
- Increasing agreement coverage
- Climbing the service value ladder

Profitability

Growth

